[고든 정의 TECH+] 핵융합 에너지의 획기적인 돌파구 ‘미 국립 점화 시설’
송현서 기자
업데이트 2022 12 16 08:44
입력 2022 12 16 08:44
이는 투입한 에너지보다 방출한 에너지가 더 많은 것으로 핵융합 발전 연구에 획기적인 전기를 마련한 것으로 평가받고 있습니다. 물론 이 성과가 2009년 NIF가 완공된 후 13년 만에 거둔 쾌거인 것은 사실이지만, 실제 핵융합 발전까지는 아직 갈 길이 먼 상태입니다. 왜 그런지 NIF의 이론과 역사를 간단히 소개합니다.
현재 핵융합 연구의 대세는 토카막 방식입니다. 핵융합 반응을 유지할 수 있는 섭씨 1억 도의 초고온 플라스마를 자기장 안에 가두는 장치입니다.
이렇게 높은 온도의 플라스마를 직접 담을 용기가 없기 때문에 사용한 방법인데, 사실 이런 초고온 플라스마를 핵융합 반응이 지속되도록 유지하는 일이 쉽지 않아 현재 상업적인 발전은 불가능합니다. 토카막 핵융합 기술의 돌파구 마련을 위해 우리나라를 포함한 전 세계 여러 나라가 협력해 건설하는 것이 국제 핵융합 실증로(ITER)입니다.
물론 과학자들은 핵융합 발전을 위해 여러 가지 대안들을 생각해냈습니다. 그중 하나가 강력한 레이저를 한 점에 모아 연료 캡슐을 점화한 후 내부에 핵융합 반응이 가능한 초고압, 초고온 상태를 만드는 것입니다. 이 방식을 관성 봉입 핵융합 (ICF) 기술이라고 하는데, 토카막에 견줄 수 있는 대형 시설은 미국의 NIF가 유일합니다.
NIF는 1997년부터 2009년까지 12년에 걸쳐 42억 달러의 천문학적 비용을 투입해 건설됐습니다. 총 500조 와트 출력의 초강력 레이저 192개를 거대한 타겟 챔버 안에서 2mm 지름의 연료 캡슐에 명중시키면 영하 255도의 중수소-삼중수소가 핵융합 반응을 일으키는 방식입니다.
이론적으로 보면 자기장 그릇에 초고온 플라스마를 장시간 가두는 것보다 쉬울 것 같지만, 레이저를 모으는 일은 간단한 문제가 아니었습니다. 실제로 500조 와트(1.85MJ)의 출력에 도달한 것은 완공 3년 후인 2012년이었는데, 올림픽 경기장만큼 큰 레이저 시설에서 좁쌀 크기의 연료 캡슐에 에너지를 집중시키는 일은 만만치 않은 과제였습니다.
물론 NIF의 과학자들은 레이저의 출력을 높이고 연료 캡슐의 디자인을 개선해서 핵융합 에너지 수율을 높이기 위해 노력했습니다. 하지만 2021년 전까지는 수율이 100-170KJ 수준에 불과했습니다.
그러다가 2021년에 와서 1.3MJ의 수율을 얻어 획기적인 전기를 마련하게 됩니다. 그리고 마침내 설계 출력 이상인 2.05MJ의 에너지를 투입해 1.5배의 핵융합 에너지를 얻은 것입니다.
하지만 그렇다고 해서 실제 핵융합 발전이 눈앞에 다가온 것은 아닙니다. NIF는 이름처럼 '점화' 시설로 발전 시스템은 처음부터 존재하지 않습니다. 당장에 고민할 문제는 발전 방식보다는 에너지 수율을 높이고 점화 횟수를 늘리는 것이기 때문입니다.
핵융합에서 나온 열을 전기로 바꾸는 일은 또 다른 도전입니다. 거대한 타겟 챔버 안에서 발생하는 핵융합 반응은 내부를 따뜻하게 할 순 있지만, 터빈을 돌릴 수 있는 뜨거운 증기를 만들 수 있는 수준은 아닙니다.
NIF의 이번 성과가 정말 획기적인 것이고 초기 테스트 결과와 비교해서 괄목할 만한 발전이라는 점은 부인할 수 없는 사실입니다.
다만 앞서 기술한 문제 때문에 아직은 갈 길이 먼 것도 사실입니다. 그러나 아무리 먼 길도 포기하지 않고 꾸준히 가다 보면 목적지에 도달하게 마련입니다. 지금처럼 꾸준한 투자와 연구가 진행된다면 언젠가 인류가 무한한 청정 에너지원인 핵융합을 이용한 날도 올 것으로 믿습니다.