[이광식의 천문학+] 블랙홀 초간단 정리 - 상상 이상으로 기괴한 블랙홀
입력 2019 04 15 09:49
수정 2019 04 15 10:17
이로써 1915년 발표된 알버트 아인슈타인의 일반 상대성 이론은 다시 한번 검증에 거뜬히 통과하는 쾌거를 이룩했습니다. 즉, 물체의 질량이 주변 시공간을 휘게 하며, 질량이 클수록 시공간의 곡률은 더욱 큰 곡률을 갖게 된다는 내용입니다. 천문학 최대의 화두인 블랙홀이란 과연 무엇일가요? 초간단 정리해보겠습니다.
상상 속에서 태어난 ‘검은 별’(Dark stars)
블랙홀은 우주에서 가장 기이하고도 환상적인 천체라 할 수 있습니다. 물질밀도가 극도로 높은 나머지 빛마저도 빠져나갈 수 없는 엄청난 중력을 가진 존재입니다. 가까이 접근하는 모든 물체를 가리지 않고 게걸스럽게 집어삼키는 중력의 감옥, 블랙홀. 모든 연령층, 모든 직업군을 아우르면서 블랙홀에 대해 크나큰 관심을 불러일으키고 상상력을 자극하는 것은 대체 무엇 때문일까요?
이 괴이쩍은 존재는 최초로 인간의 상상 속에서 태어났습니다. 1783년, 천문학에 관심이 많던 영국의 지질학자 존 미첼이 밤하늘의 별을 보면서 엉뚱한 생각을 합니다. 뉴턴의 중력 법칙과 빛의 입자설을 결합하여, '별이 극도로 무거우면 중력이 너무나 강한 나머지 빛마저도 탈출할 수 없게 되어 빛나지 않는 검은 별이 될 것이다' 이것이 블랙홀 개념의 첫 씨앗이었습니다. 미첼은 이런 생각을 쓴 편지를 왕립협회로 보냈습니다.
'만약 태양과 같은 밀도를 가진 어떤 구체의 반지름이 태양의 500분의 1로 줄어든다면, 무한한 높이에서 그 구체로 낙하하는 물체는 표면에서 빛의 속도보다 빠른 속도를 얻게 될 것이다. 따라서 빛이 다른 물체들과 마찬가지로 관성량에 비례하는 인력을 받게 된다면, 그러한 구체에서 방출되는 모든 빛은 구체의 자체 중력으로 인해 구체로 되돌아가게 될 것이다'
그러나 당시 과학자들은 이론적인 것일 뿐, 그런 별이 실재하지는 않을 거라 생각하고 무시했습니다. 이러한 ‘검은 별’ 개념은 19세기 이전까지도 거의 무시되었는데, 그때가지 빛의 파동설이 우세했기 때문에 질량이 없는 파동인 빛이 중력의 영향을 받을 것이라고는 생각하기 힘들었기 때문입니다.
블랙홀 등장, 백조자리 X-1
그로부터 130년이 훌쩍 지난 1916년, 아인슈타인이 우주를 기술하는 뉴턴 역학을 대체하여 시간과 공간이 하나로 얽혀 있음을 보인 일반 상대성 이론을 발표한 직후, 검은 별 개념은 새로운 활력을 얻어 재등장했습니다. 일반 상대성 이론은 중력을 구부러진 시공간으로 간주하며, 질량을 가진 천체는 주변 시공간을 휘게 만든다는 이론입니다.
독일의 카를 슈바르츠실트가 아인슈타인의 중력장 방정식을 별에 적용해서 방정식의 해를 구했습니다. 그 결과, 별이 일정한 반지름 이하로 압축되면 빛마저 탈출할 수 없는 강한 중력이 생기게 되고, 그 중심에는 모든 물리법칙이 통하지 않는 특이점이 나타난다는 것을 알았습니다. 이것을 '슈바르츠실트 반지름'이라고 부릅니다. 이는 어떤 물체가 블랙홀이 되려면 얼마만한 반지름까지 압축되어야 하는가를 나타내는 반지름 한계치입니다.
이에 대해 아인슈타인은 “슈바르츠실트 반지름은 수학적 해석일 뿐, 실재하지 않는다는 것을 내 연구는 보여준다”면서 인정하지 않았습니다. 그러나 그 뒤 핵물리학이 발전하여 충분한 질량을 지닌 천체가 자체 중력으로 붕괴한다면 블랙홀이 될 수 있다는 예측을 내놓았고, 이 예측은 결국 강력한 망원경으로 무장한 천문학자들에 의해 관측으로 입증되었습니다. 1963년 미국 팔로마산 천문대는 심우주에서 유독 밝게 빛나는 천체를 발견했는데, 그것이 검은 별의 에너지로 형성된 퀘이사임을 확인했습니다. 오로지 상상 속에서만 존재하던 검은 별이 2세기 만에 마침내 실마리를 드러낸 것입니다.
사실 이전에는 ‘블랙홀’이란 이름조차 없었습니다. 대신 ‘검은 별’, ‘얼어붙은 별’, ‘붕괴한 별’ 등 이상한 이름으로 불려왔죠. ‘블랙홀’이란 용어를 최초로 쓴 사람은 미국 물리학자 존 휠러로, 1967년에야 처음으로 일반에 소개되었으며, 블랙홀의 실체가 발견된 것은 1971년이었습니다. 그 존재가 예측된 지 거의 200년이 지나서야 이름을 얻고 실체가 발견된 셈입니다.
1971년 미 항공우주국(NASA)의 X-선 관측위성 우후루는 블랙홀 후보로 백조자리 X-1을 발견했습니다. 강력한 X-선을 방출하는 이것이 과연 블랙홀인가를 놓고 이론이 분분했는데, 급기야는 과학자들 사이에 내기가 붙었습니다. 1974년 스티븐 호킹과 킵 손 사이에 벌어진 내기에서 호킹은 백조자리 X-1이 블랙홀이 아니라는 데에 걸었고, 킵 손 교수는 그 반대에 걸었습니다. 지는 쪽이 성인잡지 ‘펜트하우스’ 1년 정기 구독권을 주기로 했죠. 1990년 관측자료에서 특이점의 존재가 입증되자 호킹은 내기에 졌음을 인정하고 잡지 구독권을 킵 손에게 보냈는데, 그 일로 킵 손 부인에게 엄청 원성을 샀다고 합니다.
2005년에는 우리은하 중심에서도 블랙홀이 발견되었는데, 최신 관측자료에 의하면 전파원 궁수자리 A*가 태양 질량의 430만 배인 초대질량 블랙홀임이 밝혀졌습니다.
영화 ‘인터스텔라’ 제작에 자문역으로 참여하기도 했던 킵 손은 나중에 블랙홀 존재를 결정적으로 입증한 LIGO(레이저 간섭계 중력파 관측소)의 블랙홀 중력파 검출로 노벨 물리학상을 받았습니다. 블랙홀 연구에 큰 업적을 남긴 호킹은 노벨상을 받지 못해 안타깝게도 킵 손에게 두 번이나 패배한 형국이 되었습니다.
블랙홀은 엄청난 질량을 갖고 있지만 덩치는 아주 작습니다. 그만큼 물질밀도가 극도로 높다는 뜻이죠. 예컨대 태양이 블랙홀이 되려면 얼마나 밀도가 높아야 할까요? 슈바르츠실트 반지름의 해 공식으로 구해보면, 70만㎞인 반지름이 3㎞까지 축소되어야 하며, 밀도는 자그마치 1cm^3에 200억 톤의 질량이 됩니다. 각설탕 하나 크기가 그만한 무게가 나간다는 얘기죠. 지구가 블랙홀이 되려면 반지름이 우리 손톱 정도인 0.9cm로 작아져야 합니다.
이처럼 초고밀도의 블랙홀은 중력이 극강이어서 어떤 것도 블랙홀을 탈출할 수가 없습니다. 지구 탈출속도는 초속 11.2㎞이며, 빛의 초속은 30만㎞입니다. 블랙홀의 중력이 너무나 강해 탈출속도가 30만㎞를 넘기 때문에 빛도 여기서 탈출할 수가 없는 거죠. 따라서 우리는 블랙홀을 볼 수가 없습니다. 그런데 과학자들은 블랙홀의 존재를 확인할 수가 있습니다. 어떻게? 블랙홀이 주변의 가스와 먼지를 강력히 빨아들일 때 방출하는 X-선 복사로 그 존재를 탐색할 수 있습니다.
우리은하 중심부에 있는 초대질량 블랙홀은 두터운 먼지와 가스로 뒤덮여 있어 X-선 방출을 가로막고 있습니다. 물질이 블랙홀로 빨려들어갈 때 블랙홀의 사건 지평선 입구에서 안으로 들어가지 않고 스쳐지나는 경우도 있습니다. 블랙홀이 직접 보이지는 않지만, 물질이 함입될 때 발생하는 강력한 제트 분출은 아주 먼 거리에서도 볼 있습니다.
1958년에 미국 물리학자 데이비드 핀켈스타인이 블랙홀의 ‘사건 지평선’ 개념을 처음으로 선보였습니다. 사건 지평선이란 외부에서는 물질이나 빛이 자유롭게 안쪽으로 들어갈 수 있지만, 내부에서는 블랙홀의 중력에 대한 탈출속도가 빛의 속도보다 커서 원래의 곳으로 되돌아갈 수 없는 경계를 말합니다. 말하자면 블랙홀의 일방통행 구간의 시작점이죠. 어떤 물체가 사건의 지평선을 넘어갈 경우, 그 물체에게는 파멸적 영향이 가해지겠지만, 바깥 관찰자에게는 속도가 점점 느려져 그 경계에 영원히 닿지 않는 것처럼 보입니다.
블랙홀은 특이점과 안팎의 사건 지평선으로 구성됩니다. 특이점이란 블랙홀 중심에 중력의 고유 세기가 무한대로 발산하는 시공간의 영역으로, 여기서는 물리법칙이 성립되지 않습니다. 즉, 사건의 인과적 관계가 보장되지 않는다는 뜻이죠. 이 특이점을 둘러싸고 있는 것이 안팎의 사건 지평선으로, 바깥 사건 지평선은 물질이 탈출이 가능한 경계이지만, 안쪽의 사건 지평선은 어떤 물질이라도 탈출이 불가능한 경계입니다.
블랙홀, 화이트홀, 웜홀
1964년, 이론 물리학자 존 휠러가 최초로 ‘블랙홀’이라는 단어를 대중에게 선보인 데 이어 1965년에는 러시아의 이론 천체물리학자 이고르 노비코프가 블랙홀의 반대 개념인 ‘화이트홀’이라는 용어를 만들었습니다. 만약 블랙홀이 모든 것을 집어삼킨다면 언젠가 우주공간으로 토해낼 수 있는 구멍도 필요하지 않겠는가 하는 것이 이 화이트홀 가설의 근거입니다. 말하자면, 블랙홀은 입구가 되고 화이트홀은 출구가 되는 셈이죠.
이렇게 블랙홀과 화이트홀을 연결하는 우주 시공간의 구멍을 웜홀(벌레구멍)이라 합니다. 말하자면 두 시공간을 잇는 좁은 통로로, 우주의 지름길이라 할 수 있습니다. 웜홀을 지나 성간여행이나 은하 간 여행을 할 때, 훨씬 짧은 시간 안에 우주의 한쪽에서 다른 쪽으로 도달할 수 있다는 거죠. 웜홀은 벌레가 사과 표면의 한쪽에서 다른 쪽으로 이동할 때 이미 파먹은 구멍으로 가면 더 빨리 간다는 점에 착안하여 이름지어진 거죠.
하지만 화이트홀의 존재가 증명된 바 없으며, 블랙홀의 기조력 때문에 진입하는 모든 물체가 파괴되어서 웜홀을 통한 여행은 수학적으로만 가능할 뿐입니다. 그래서 스티븐 호킹도 웜홀 여행이라면 사양하고 싶다고 말한 적이 있습니다.
어쨌든 블랙홀의 현관 안으로 들어갔던 물질이 다른 우주의 시공간으로 다시 나타난다는 아이디어는 그다지 놀랄 만한 것은 아니지만, 여기에서 무수한 공상과학 스토리가 탄생했습니다. ‘닥터 후(Doctor Who)’, ‘스타게이트(Stargate)’, ‘프린지(Fringe)’ 등 끝이 없을 정도죠.
이런 얘기들은 하나같이 등장인물들이 우리 우주와 다른 우주 또는 평행우주를 여행한다는 줄거리로 되어 있습니다. 그러한 우주는 수학적으로 성립되는 가공일 뿐으로, 그 존재에 대한 증거는 아직까지 하나도 밝혀진 것이 없습니다. 그러나 어떤 의미에서 시간여행이 현실적으로 불가능하다는 얘기는 아닙니다. 만약 우리가 엄청난 속도로 여행하거나, 또는 블랙홀 안으로 떨어진다면 외부 관측자의 눈에는 시간의 흐름이 아주 느리게 보일 것입니다. 이것을 중력적 시간지연이라 합니다.
이 효과에 의해 블랙홀로 낙하하는 물체는 사건의 지평선에 가까워질수록 점점 느려지는 것처럼 보이고, 사건의 지평선에 닿기까지 걸리는 시간은 무한대가 됩니다. 즉 사건의 지평선에 닿는 것이 외부에서는 관찰될 수 없습니다. 외부의 고정된 관찰자가 보면 이 물체의 모든 과정은 느려지는 것처럼 보이기 때문에, 물체에서 방출되는 빛도 점점 파장이 길어지고 어두워져서 결국 보이지 않게 됩니다.
아인슈타인의 특수 상대성 이론에 따르면, 빠르게 운동하는 시계의 시간은 느리게 갑니다. 2014년 영화 ‘인터스텔라’는 블랙홀 근처에서 일어나는 이러한 현상을 보여주었죠. 우주 비행사 쿠퍼(매튜 맥커너히)가 시간여행을 할 수 있었던 것은 그 때문입니다.
블랙홀의 사건 지평선 안에는 실제로 어떤 것이 있을까란 문제는 여전히 뜨거운 논쟁거리가 되고 있습니다. 블랙홀 내부를 이해하기 위해 끈이론, 양자 중력이론, 고리 양자중력, 거품 양자 등등 현대 물리학의 거의 모든 이론들이 참여하고 있습니다.
이광식 칼럼니스트 joand999@naver.com